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ABSTRACT
The restricted access window (RAW) feature of IEEE 802.11ah aims
to significantly reduce channel contention in ultra-dense and large-
scale sensor networks. It divides stations into groups and slots,
allowing channel access only to one RAW slot at a time. Several
algorithms have been proposed to optimize the RAW parameters
(e.g., number of groups and slots, group duration, and station as-
signment), as the optimal parameter values significantly affect per-
formance and depend on network and traffic conditions. These
algorithms often rely on accurate estimation of future sensor sta-
tion traffic. In this paper, we present a more accurate traffic esti-
mation technique for IEEE 802.11ah sensor stations, by exploiting
the “more data” header field and cross slot boundary features. The
resulting estimation method is integrated into an enhanced version
of the Traffic-Adaptive RAW Optimization Algorithm, referred to
as E-TAROA. Simulation results show that our proposed estimation
method is significantly more accurate in very dense networks with
thousands of sensor stations. This in turn results in a significantly
more optimal RAW configuration. Specifically, E-TAROA converges
significantly faster and achieves up to 23% higher throughput and
77% lower latency than the original TAROA algorithm under high
traffic loads.
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• Networks → Network dynamics; Network management;
Wireless access networks; • Computing methodologies →
Modeling and simulation;
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1 INTRODUCTION
The Internet of Things (IoT) ultimately envisions connecting tens
of billions of low-power and resource-constrained devices to the
Internet. This will result in ultra-dense deployments of sensors
and actuators, with thousands of them coexisting in a small ge-
ographical area. Enabling this vision will require novel wireless
communications solutions that scale properly to such extreme pro-
portions. It is widely known that traditional media access control
(MAC) scheduling methods, such as carrier sense multiple access
(CSMA), time division multiple access (TDMA), and ALOHA do
not scale properly under ultra-dense conditions. CSMA has been
shown to result in significant overall throughput degradation due
to contention with only a few hundred stations connected to the
access point (AP) [13]. Although TDMA scales better as the net-
work becomes denser, it is less flexible and results in wasted airtime
in heterogeneous and low-throughput environments [13]. Finally,
ALOHA has an even higher collision probability than CSMA in
dense environments. Recent measurements of LoRaWAN, which
employs an ALOHA-like MAC, show that as few as 100 stations on
a small geographical area already results in significantly reduced
performance [3].

The recently released long-range and low-power Wi-Fi standard
IEEE 802.11ah proposes a novel channel access method, referred to
as the restricted access window (RAW). It is a flexible hybridmethod,
highly suited to provide scalable connectivity to both sparsely and
densely deployed low-power devices. RAW is based on station
grouping and attempts to reduce contention and collisions in highly
dense deployments by dividing stations into groups and allowing
channel access to one group at a time. Consequently, IEEE 802.11ah
allows up to 8192 stations to connect to a single AP. The 802.11ah
standard, however, does not specify how to configure the actual
RAW grouping parameters. These parameters include the number
of groups, the duration of each group, the number of (equal-sized)
slots in each group, and which stations to assign to each group.
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Previously, we conducted an in-depth analysis of station group-
ing, and concluded that the optimal RAW parameters depend on
a wide range of network variables, such as number of stations,
network load and traffic patterns [13]. Incorrect configuration se-
verely impacts throughput, latency and energy efficiency. Several
algorithms have been proposed to determine suitable RAW param-
eters. For sensor network traffic with either 1 packet per station
or under saturation, some analytical models were proposed. These
models are based on different techniques, such as probability the-
ory [10, 15], Markov chains [7, 16], multi-objective game theory [2],
and maximum likelihood estimation [9]. However, these models are
computationally hard, which makes it infeasible to execute them in
real-time on actual AP hardware. As an alternative that is compu-
tationally feasible and deployable, several partitioning algorithms
were proposed. They partition the stations into different RAW slots
based on different metrics, such as arbitration inter-frame space
number (AIFSN) value [8], and station traffic load [4]. However,
this information is not known to the AP in reality, also making
them infeasible to implement. Recently, we proposed a real-time
station grouping algorithm, named TAROA, by estimating the traf-
fic conditions of each station with information only available at
the AP [14]. In contrast to other state-of-the-art algorithms it is
capable of adjusting its RAW configuration in real-time, in face of
station and traffic dynamics.

In this paper, we propose a more accurate traffic estimation tech-
nique for TAROA by exploiting the “more data” header field and
cross slot boundary features of IEEE 802.11ah. By using the “more
data” field of the data packet, a station can indicate to the AP that
its transmission queue still has packets, the cross slot boundary
feature allows a station to continue an ongoing transmission after
the end of the current RAW slot. The proposed traffic estimation
approach can quickly adjust the estimation and avoid false nega-
tive packet transmissions for estimation. The estimation method
is integrated into TAROA and referred to as Enhanced TAROA (E-
TAROA). Thorough evaluations in the extended version of 802.11ah
ns-3 simulator [11] are performed to compare E-TAROA to the orig-
inal algorithm in terms of traffic estimation accuracy, throughput,
latency and energy efficiency.

The remainder of this paper is organized as follows. Section 2
provides a brief overview of the RAW feature. The more accurate
sensor traffic estimation approach and E-TAROA are described
in Section 3. In Section 4, we provide the simulation results of E-
TAROA and compare it to the original TAROA algorithm. Finally,
Section 5 concludes the paper.

2 RESTRICTED ACCESS WINDOW
The RAW mechanism aims to mitigate collisions and improve per-
formance in dense sensor networks in which a large number of
stations are contending for channel access simultaneously. It splits
stations into groups and only allows stations assigned to a certain
group to access the channel at specific times. Figure 1 schematically
depicts how RAW works. Specifically, the channel airtime is split
into several intervals, some of which are assigned to RAW groups,
while others are shared and can be accessed by all stations using
the traditional 802.11 CSMA with collision avoidance (CSMA/CA)
method. At fixed intervals a beacon frame is transmitted, carrying a

RAW	A RAW	B RAW	C RAW	D

slot 0 slot	1 slot	i slot	NRAW-1… …

station X

assigned to

assigned to

beacon
carrying RPS

beacon
carrying RPS

Figure 1: Schematic representation of the RAWmechanism,
with the beacon RPS element carrying information about
the number of RAW groups, their duration, number of

equal-sized slots and assigned stations

RAW parameter set (RPS) information element, which specifies the
stations belonging to each group, the group start time, and duration.
Moreover, each RAW group consists of one or more equal-duration
slots, among which the stations assigned to the RAW group are
evenly split (using round robin assignment). The RPS information
element also contains the number of slots, slot format and slot
duration count sub-fields, which jointly determine the RAW slot
duration as follows:

D = 500 µs +C × 120 µs (1)

WhereC represents the slot duration count sub-field, which is either
y = 11 or y = 8 bits long if the slot format sub-field is set to
respectively 1 or 0. The number of slots field is 14 − y bits long. As
such, if y = 11, each RAW group consists of at most 8 slots and the
slot duration is up to 246.14 ms. If y = 8, each RAW group consists
of at most 64 slots and the slot duration is limited to 31.1 ms at
most. Stations are mapped to slots as follows:

islot = (x + Noffset) mod NRAW (2)

Where islot is the index of ith RAW slot to which the station is
mapped. NRAW is the number of slots in one RAW group. Noffset is
the offset value in the mapping function to improve fairness and
equals the two least significant octets of the FCS field of the S1G
beacon frame, and x is the index of the station. Figure 1 shows an
example of the RAW slot assignment procedure.

The RPS also contains the cross slot boundary (CSB) sub-field.
As Figure 2 depicts, stations are allowed to continue their ongoing
transmissions even after the end of the current RAW slot when CSB
is set to true. Otherwise, stations should not start a transmission
if the remaining time in the current RAW slot is not enough to
complete it. The remaining time, termed as “holding time”, should
be at least equal to the TXOP of the station. Hazmi et al. [5] proposed
several holding schemes that specify how the station should count
its back-off within the holding period.

3 ENHANCED TAROA
This section describes the Enhanced Traffic-Adaptive RAW Opti-
mization Algorithm (E-TAROA), which enhances the traffic esti-
mation method of the TAROA algorithm [14]. First, an overview
is given of TAROA and its enhanced version. Subsequently, the
derivation of packet transmission interval information by exploit-
ing the “more data” header field and cross slot boundary features is
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Figure 2: Illustration of the non cross slot boundary and
cross slot boundary features of RAWmechanism in

IEEE 802.11ah

Table 1: Variables introduced in the algorithm description

Variable name Description
tc Current time⋆
π sb,r Number of packets received by the AP

in RAW slot r of beacon interval b
π sfailed Number of consecutive failed transmissions
tsnext Estimated next transmission time⋆
tsint Estimated transmission interval⋆
t̂sint Real transmission interval⋆
tssucc [0] Last successful transmission time⋆
tssucc [1] Previous to last successful transmission time⋆
π strans [0] Last transmission result, success or failure
π strans [1] Previous to last transmission result
ms

succ[0] Transmission queue has packets, indicated
by last successful transmission packet

ms
succ[1] Transmission queue has packets, indicated by

Previous to last successful transmission
cssucc Packet transmission span two beacon interval
∆sm Number packet transmission resulting

in more packet in transmission queue
⋆ Expressed as a multiple of number of beacon intervals.

described. Finally, based on this derived information, the proposed
novel traffic estimation algorithm is presented. Table 1 provides an
overview of the variables used throughout this section.

3.1 General overview
TAROA [14] aims to optimize the RAW parameters in real time, in
order to get high performance in ultra-dense and large-scale sensor
networks. TAROA targets IoT sensor-based monitoring scenarios,
where a large set of sensor stations S send measurements to a back-
end server (through the AP) at specific time intervals. A sensor
station s usually has a predictable packet transmission interval t̂sint ,

which may change over time (e.g., when an environmental event
triggers a change in the sensor measurement interval).

In TAROA, optimizing the RAW parameters strongly relies on
accurate estimation of this interval t̂sint for each station s . However,
TAROA does not fully utilize all the information available in the
IEEE 802.11ah packet header, which could provide more insights
into the station’s traffic pattern. Therefore, we propose a more accu-
rate traffic estimation method by exploiting the “More Data” header
field and cross slot boundary feature. We refer to the integration
of TARAO and this novel traffic estimation method as Enhanced
TAROA (E-TAROA).

TAROA, as well as E-TAROA, is executed at each target beacon
transmission time (TBTT) and consists of two main steps. First, the
AP applies the proposed traffic estimation method to determine
the estimated next transmission time of each stations. Second, the
algorithm determines the RAW parameters (number of groups, slots
per group, and group duration) and assigns stations to each RAW
group based on their estimated traffic.

The first step of E-TAROA (traffic estimation) is significantly
different from the version of TAROA, and is described in the remain-
der of this section. The second step (RAW parameter optimization)
of E-TAROA is nearly identical to the one of the original algorithm.
The only difference is that E-TAROA allows stations with queued
packets, but an estimated next transmission time greater than the
time of the next beacon, to transmit, while TAROA did not consider
their buffer and would not schedule them for transmission. As such,
we refer the reader to the description of the original algorithm for
a more detailed overview of this step [14].

3.2 Deriving transmission information
The traffic estimation of each station in TAROA is based on the
successful and failed transmissions during the previous beacon
interval, which can be directly obtained from the number of packets
received by the AP. However, by exploiting the “more data” header
field and the cross slot boundary feature of IEEE 802.11ah, additional
information about the station’s queue and traffic generation interval
can be derived and more accurate traffic estimation can be achieved.

IEEE 802.11ah inherits the “more data” header field from the
legacy IEEE 802.11 standard and further extends its application
scope. An 802.11ah station can set the “more data” header field of
the frame control field to 1 in individually addressed packets to
indicate that it has packets queued for transmission to the AP. In
the legacy 802.11 standard, the “more data” field can be only used in
the contention free (CF) period of the Point Coordination Function
(PCF) or PS (power save) mode. Figure 3a depicts an example of
a station notifying the AP that it has more packets in its queue
using the “more data” header field. It shows, when the estimated
traffic interval tsint (i.e., 7 in the example) of station s is larger than
the real transmission interval t̂sint (i.e., 5 in the example), there is
one packet buffered at station s after ∆sm times transmission. In
this case, the real transmission interval t̂sint satisfies the following
conditions: {

(tsint − t̂
s
int) × ∆

s
m + offset ≥ t̂sint

(tsint − t̂
s
int) × ∆

s
m + offset < t̂sint × 2

(3)
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Figure 3: Parameters used for estimating the transmission
interval of station s at time tc

Where offset means, right offset beacon intervals before tsint is cal-
culated for the first time, a packet arrives in the transmission queue.
offset ranges from 0 to t̂sint − 1. Therefore, by using the “more data”
header field, the estimated lower and upper bound of the real trans-
mission interval t̂sint can be represented as:{

ts,mintMin =
∆sm

∆sm+2 × t
s
int + 1

ts,mintMax = tsint − 1
(4)

The cross slot boundary feature allows ongoing transmissions
to continue after the end of the current RAW slot. This feature can
cause a packet transmission to span two beacon intervals. As a
consequence, traffic estimation, which is performed at the TBTT,
will consider such a transmission as failed, while in reality it may
succeed. An example of this is depicted in Figure 3b. TAROA con-
siders the transmission a failure at time tc − 1 but a success at time
tc . E-TAROA improves estimation accuracy by accounting for the
incorrect information used at time tc − 1 and correcting it at time
tc , as shown below.

3.3 Sensor traffic estimation
The goal of sensor traffic estimation is to determine the estimated
transmission interval tsint and next transmission time tsnext for each
station s . As shown in Algorithm 1, they are estimated based on
successful and failed transmissions during the previous beacon
interval. A station’s transmission is regarded as successful if the AP
received at least one packet from the station. When only one packet
from a station was received, and the station was not assigned to
a RAW slot, the AP assumes the transmission crossed two beacon
intervals. By using the “more data” field, a successful transmission
can further indicate whether the station has more packets in its

Algorithm 1: Transmission interval estimation of station
s

input :tssucc [0] , tssucc [1] ,π strans [0] ,π strans [1] , tsint, tc ,π
s
b,r ,π

s
failed,

ms
succ [0],ms

succ [1], cssucc ,∆sm
output :tsint, t

s
next

1 if π strans [0] == failed ∧ms
succ [0] == f alse then

2 π sfailed ← π sfailed + 1
3 tsint ← tc − tssucc [0] + 2 × π sfailed − 1
4 else if π strans [0] == success ∧ π strans [1] == failed then
5 π sfailed ← 0
6 if cssucc == true then
7 tssucc [0] − 1
8 tsint ← tssucc [0] − tssucc [1]
9 else if π sb == 1 then

10 π sfailed ← 0
11 if tsint > 1 ∧ms

succ [1] == true ∧ms
succ [0] == f alse

then
12 tsintMin =max(tsint −2×(π

s
f ail−1),

∆sm
∆sm+2×t

s
int +1)

13 tsintMax = tsint − 1
14 tsint = (t

s
intMin + t

s
intMax )/2

15 else if tsint > 1 then
16 tsint ← tssucc [0] − tssucc [1]
17 else if cssucc == f alse ∧ms

succ [0] == f alse then
18 tsint ← 1

19 else if π sb > 1 then
20 π sfailed ← 0
21 if tsint > 1 then
22 tsint ← tsint − 1
23 else if π sb > 1/tsint then
24 1/tsint ← 1/tsint + 1
25 else if π sb < 1/tsint ∧m

s
succ [0] == f alse then

26 1/tsint ← 1/tsint − 1

27 tsnext = tsint + t
s
succ [0]

queue or not. If a station was assigned a RAW slot, but no packets
were received by the AP, it is considered a failed transmission. The
algorithm consists of four main blocks: (i) the previous transmission
failed (lines 1–3), (ii) the previous transmission was successful, but
the one before failed (lines 4–8), (iii) the last two transmissions
were successful, and only one packet was received in the previous
beacon interval (lines 9–18), and (iv) the last two transmissions
were successful, and more than one packet was received in the
beacon interval (lines 19–26).

In the first case (lines 1–3), if the previous successful transmis-
sion did not indicate station s had packets queued to send, and the
previous transmission failed, the transmission failure counter π sfailed
is increased by 1, and tsint is increased by the number of subsequent
failed transmissions multiplied by two. The transmission failure
can be caused by a collision or the lack of packets in the station’s
transmission queue (i.e. no packets arrived in the transmission
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queue since the previous successful transmission). As RAW aims to
minimize collisions, by properly grouping the stations into RAW
slots, we assume the probability of transmission failure caused by
collision is low enough to be ignored. Thus, the estimated trans-
mission interval tsint of station s is considered too short. As shown
in Line 3, as the number of sequential failed transmission attempts
increases, the algorithm assumes its estimation is more wrong and
it will increase the interval faster. As such, the transmission interval
can be overestimated up to 2 × (π sf ail − 1) beacon intervals. The
first case also implies that if the failed transmission was caused
by collision (i.e., the station had buffered packets to send but the
previous transmission failed), tsint remains unchanged.

In the second case (lines 4–8), the failure counter π sfailed is set to
0 and the transmission interval is estimated as the time difference
between the last two successful transmissions, i.e. tssucc [0] and
tssucc [1]. If the previous successful transmission crosses two beacon
intervals, tssucc [0] is decreased by one beacon interval.

If an accurate tsint is obtained in case 2, the next transmission
will succeed and lead to case 3 (lines 9–18) or case 4 (lines 19–
26) in which the two last transmissions are successful. In case 3,
only 1 packet was received in the previous beacon interval. In
both cases 3.1 (lines 11–14) and 3.2 (lines 15–16), tsint is larger
than one. For case 3.1, the transmission queue had no packets at
the time of the last successful transmission but had packets at
the time of previous to last successful transmission. This means
the transmission interval was overestimated, and after ∆sm times
transmission, this overestimation results in one buffered packet in
the transmission queue at the time of the previous to last successful
transmission. The estimated lower bound of the real transmission
interval is updated as the maximum of the lower bound depicted
in Equation 4, and tsint − 2 × (π sf ail − 1). The latter means the
transmission interval is overestimated by up to 2×(π sf ail−1) beacon
intervals in case 1 (line 3). The upper bound is updated by using
Equation 4. The value of tsint is set to the average of the two bounds.
Case 3.2 covers all the remaining conditions, tsint is updated in the
sameway as in case 2 (lines 15–16). Case 3.3 (lines 17–18) represents
the inverse of case 3.1 and 3.2, where tsint is equal to or smaller
than 1 (i.e., the station is estimated to generate 1 or more than 1
packet per beacon interval). If the previous successful transmission
did not cross two beacon intervals and the transmission queue is
empty, tsint becomes 1, otherwise, tsint remains unchanged.

In case 4 (lines 19–26), more than 1 packet was received. In case
4.1 (lines 21–22), tsint is larger than 1 (i.e., only 1 packet was allowed
to be transmitted in the previous beacon interval), the overestimated
tsint is reduced by 1 beacon interval. In case 4.2 (lines 23–24), the
number of received packets is higher than the estimated number of
expected packets (i.e., 1/tsint), the transmission interval is reduced
by adding 1 to the inverse. Case 4.3 (lines 25–26) represents fewer
packets are received than estimated and the transmission queue
has no buffered packets. The transmission interval is increased by
subtracting 1 from the inverse.

Finally, the next transmission time is calculated as the last suc-
cessful transmission plus the newly estimated transmission interval
(line 27). In essence, the algorithm is iterative, and as more informa-
tion about successful and failed transmissions becomes available,
the estimate of tsint will become more accurate.

Table 2: Default parameter values used in the simulation
experiments

PHY parameters Value
Frequency (Mhz) 868
TX power (dBm) 0
TX/RX gain (dB) 0
Noise Figure (dB) 6.8
Coding method BCC
Propagation model Outdoor, macro [6]
Error rate model YansErrorRate
MAC parameters Value
Duration of AIFS (us) 316
Beacon interval (ms) 100
Cross slot boundary enabled
Rate control algorithm constant
Size of transmission queue (packets) 10
Max/min traffic ratio between stations 20
Wi-Fi mode MCS1, 1 Mhz
Payload size (bytes) 64
Topology radius (m) 450
Station distribution random

The space and time complexity of E-TAROA are O (n + k +m)
and O

(
n2 + n × k +m × k

)
respectively, with n the total number

of stations, k the maximum number of stations that are allowed to
transmit during one beacon interval, andm the maximum number
of packets received by the AP during one beacon interval. For n
large enough, this can be simplified to O (n) and O

(
n2

)
respectively.

In 802.11ah, the maximum value of n is 8192, which provides an
upper bound on the complexity of the algorithm.

4 PERFORMANCE EVALUATION
In this section we evaluate E-TAROA and compare it to the original
TAROA algorithm in terms of traffic estimation accuracy, through-
put and latency. The algorithms are compared in both parse and
dense deployments in three scenarios: (i) static, (ii) dynamic number
of stations, and (iii) dynamic traffic patterns.

4.1 Simulation setup
The evaluations are performed using the extended version of 802.11ah
ns-3 module [11], which can keep track of power consumption of
each station on the basis of 802.11ah ns-3 module [12]. We target
dense IoT applications, where sensors monitor the environment and
report the monitoring data periodically. Each sensor has its own
monitoring and transmission interval, that may change over time.
We assume the transmission interval follows a uniform distribution,
and the ratio between any two sensors’ traffic is at most 20.

The PHY and MAC layer parameters used in the simulation are
shown in Table 2. The PHY layer parameters are configured based
on the low-power 802.11ah radio hardware prototype [1], with a
transmission power of 0 dBm, a gain of 0 dBi, and noise figure
of 6.8 dB. Considering the targeted use cases, MCS1 with 1 Mhz
bandwidth (data rate 0.6 Mbps) and payload size 64 bytes are used.
Stations are randomly placed around the AP in a circle of 450 m,
this provides a broad coverage given the configuration, and leads
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Figure 4: Performance comparison between E-TAROA, TAROA and EDCA/DCF for different static traffic loads and number
of stations

to the presence of hidden nodes. The stations’ transmission queue
has a capacity of 10 packets. No rate control algorithm (RCA) is
used at the MAC layer.

Performance is evaluated in terms of three metrics: estimation
accuracy, throughput, latency and energy consumption. The esti-
mation accuracy represents the ratio between the estimated and
the real transmission interval, averaged over all stations. As such,
a value equal to 1 means no estimation error, higher than 1 means
overestimation and lower than 1 means underestimation. Through-
put is calculated as the average number of successfully received
payload bytes by the AP per second. Latency is defined as the av-
erage time between a packet entering the transmission queue of
the station and being received by the AP. Energy consumption rep-
resents the power consumed per successfully transmitted packet.
Each simulation runs 900 s, all results are averaged over 10 itera-
tions, with the variability of results over these iterations quantified
using the standard deviation (SD).

4.2 Static traffic patterns
In this section we evaluate the performance of E-TAROA in a static
scenario, where the number of stations in the network is fixed and
they do not change their transmission interval. Three different total
traffic loads T = {0.095, 0.11, 0.15} Mbps, and 5 different number
of stations S = {128, 512, 1024, 2048, 4096} are simulated, resulting
in a total of 15 types of experiments. Given the packet payload size
and data rate, the maximum throughput that can be achieved is
about 0.124 Mbps. Therefore, 0.095 Mbps and 0.11 Mbps represent

a low and high non-saturated traffic load, while 0.15 Mbps results
in a saturated state. The traffic load and number of stations jointly
determine the density of the network, with a higher traffic load and
more stations resulting in a denser network.

Figure 4a depicts the accuracy of transmission interval estima-
tion. An accuracy equal to 1 means perfect traffic interval estima-
tion, while larger than 1 means overestimation and smaller means
underestimation. It is clearly shown that E-TAROA achieves more
accurate traffic estimation than TAROA in dense networks. For traf-
fic loadT =0.15 Mpbs, the transmission interval is overestimated by
both E-TAROA and TAROA, as the traffic is overloaded and each
station gets less transmission opportunities than it requires. The
accuracy of TAROA changes from 1.39 ± 0.10 to 1.81 ± 0.02 from
128 to 4096 stations. However, E-TAROA only overestimates the
transmission interval by at most 20 % even for 4096 stations. Under
lower traffic loads T ={0.11, 0.095} Mpbs, TAROA overestimates the
transmission interval, while E-TAROA underestimates it. However,
the accuracy of E-TAROA is much closer to 1. Moreover, in contrast
to TAROA, its accuracy almost does not degrade as the number of
stations increases, resulting in better scalability.

As the final outcome of traffic estimation, the throughput, la-
tency, and energy consumption performance are shown in Fig-
ures 4b, 4c and 4d. As paper [14] already compares TAROA and
EDCA/DCF in terms of throughput and latency but does not include
any power consumption results, we present the power consumption
of E-TAROA and EDCA/DCF in figure 4d, and omit the other two
performance of EDCA/DCF in figure 4b and 4c respectively.
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The results reveal that the more accurate traffic estimation of
E-TAROA also results in significantly improved throughput and
latency. Moreover, it leads to higher scalability in terms of both
metrics when the number of stations increases beyond 2048. For
1024 stations and less, in comparison with TAROA, E-TAROA
shows most performance improvement for the high traffic load
T = 0.11 Mpbs and achieves slightly better performance than
TAROA for T ={0.15, 0.095} Mpbs. With more than 2048 stations
contending for channel access in the network, performance of
TAROA gravely degrades, throughput drops by up to 13% and la-
tency increases by over 10 times between 1024 and 4096 stations.
The throughput of E-TAROA is more stable, with no significant
degradation even up to 4096 stations. Although E-TAROA also suf-
fers from increased latency, which is a result of the slotted nature of
RAW, it is limited to a fivefold, rather than tenfold increase. Overall,
compared to TAROA, up to 23% higher throughput and 77% lower
latency is achieved by E-TAROA. As number of stations increase,
more power is consumed by each packet in both E-TAROA and
EDCA/DCF since channel contention increases, and stations has
less packet to transmit but consume the same amount of power
to listen to the beacon frame. However, the power consumption
of E-TAROA is still much lower than EDCA/DCF, for traffic load
T = 0.15 Mpbs, EDCA/DCF consumes 46.63 and 682.13 mJ per
packets for 128 and 4096 stations respectively, while only 7.85 and
219.05mJ per packet are consumed by E-TAROA.

It is also worth mentioning that, compared to TAROA and EDCA,
E-TAROA improves fairness among stations. Although CSMA (as
used in EDCA/DCF) should provide each station with an equal
chance to access the channel, the capture effect may allow a col-
liding packet with higher receive power to be received. As such,
higher throughput can be obtained by stations that are closer to the
AP. In contrast, by properly grouping the stations, E-TAROA and
TAROA avoid this issue. The more accurate traffic estimation of E-
TAROA, further improves grouping and as a consequence fairness.
We evaluated fairness in terms of Jain’s fairness index, using the
same parameters as in Figure 4 except for evenly distributing the
traffic among stations. The fairness of E-TAROA is always above
0.997, while TAROA results in at least 0.951. Finally, EDCA/DCF
performs much worse, with a value between 0.395 and 0.8.

4.3 Dynamic number of stations
In this section, the ability of E-TAROA to adapt to changes in the
topology (i.e., number of associated stations) over time is evaluated.
The total static traffic loadT = 0.1425 Mbps is distributed uniformly
at random among 3072 stations. Simulation starts with 2048 asso-
ciated stations and a traffic load of around 0.095 Mbps. A Poisson
distribution is used to model the arrival and departure of stations.
As the traffic of each station is fixed, station (dis)association also
results in traffic variability over time.

Figure 5 compares the instantaneous throughput of E-TAROA
and TAROA when when stations join and leave the network with
Poisson rates 1, and 5 every second. The results suggest that E-
TAROA ismore resilient to network dynamics. Compared to TAROA,
it achieves higher throughput and takes less time to converge. E-
TAROA achieves faster convergence as it requires less packet trans-
missions to learn the transmission interval of stations. Although

both algorithms constantly needs to adapt the RAW configuration
as the network topology changes, E-TAROA can successfully trans-
mit all packets to the AP at Poisson rates 1, and only suffers a 8%
packet loss at Poisson rate 5. In contrast, the original TAROA suf-
fers over 12% and around 33% packet loss at Poisson rates 1 and
5 respectively. In terms of learning behavior, at Poisson rates 1,
the throughput of E-TAROA and TAROA both start from simula-
tion time 190 s, E-TAROA takes around 60 s while TAROA needs
about 500 s to converge to the actual traffic pattern. Although the
learning process takes around 120 s for both E-TAROA and TAROA
at Poisson rate 5, the throughput of TAROA is around 27% lower.
The bandwidth peak of E-TAROA that exceeds the actual generated
traffic around time 300 s, is due to the stations emptying their queue
after the AP has successfully learned their traffic patterns.

4.4 Dynamic Traffic
Besides stations (dis)associating over time, we also evaluate the
performance when the number of active stations remains static, but
instead their transmission interval changes over time. This allows
us to determine the algorithm’s ability to adapt its transmission
interval estimate in real-time. There are 2048 stations with a total
traffic load of 0.095 Mbps at the start of simulation. Every second,
a random set of stations is selected to change their transmission
interval, according to a Poisson distribution with rate λ = 10. For
each selected station, the change in transmission interval ∆ is cho-
sen uniformly at random as a percentage between [−20, 20]%or
[−50, 50]%. The instantaneous throughput for both E-TAROA as
well as TAROA is depicted in Figure 6, which is consistent with the
conclusion drawn from the results for a dynamic number of stations.
Concretely, E-TAROA can quickly adapt to the traffic changes at
both change steps ∆, obtaining on average the same throughout as
the input traffic load. In contrast, TAROA requires much more time
to adapt and the throughput drops even at rate [−20, 20]%

5 CONCLUSION
This paper presents a novel traffic estimation method for RAW
optimization in highly dense IEEE 802.11ah networks, and inte-
grates it into an enhanced version of the Traffic-Adaptive RAW
Optimization Algorithm (E-TAROA). This improved traffic interval
estimation allows more accurate selection of station grouping pa-
rameters based on real-time dynamic traffic conditions. E-TAROA
exploits the “more data” header field and cross slot boundary fea-
tures, gaining more insight into the traffic conditions, accelerating
the estimation of sensor station traffic patterns and avoiding false
negative failed packet transmissions.

The simulation results reveal that E-TAROA achieves signifi-
cantly more accurate traffic estimation than TAROA, especially
for a large number of stations. The more accurate traffic estima-
tion in turn results in highly improved throughput and latency in
dense networks. Concretely, E-TAROA attains up to 23% higher
throughput and 77% lower latency in dense networks with 4096 sta-
tions. Unlike the original TAROA, its performance is constant as the
number of stations in the network increase. This proves its greatly
improved scaling behavior in highly dense networks. Moreover,
E-TAROA is more adaptable to dynamic networks in which the
topology and traffic changes over time, only experiencing packet
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(b) Poisson rate λ = 5

Figure 5: Instantaneous throughput comparison between E-TAROA and TAROA for stations arriving and departing over
time at different Poisson rates
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Figure 6: Instantaneous throughput comparison between E-TAROA and TAROA for stations changing their transmission
interval with Poisson rate λ = 10 and different change steps ∆

loss under very high levels of station churn. Finally, by using the
additional information, E-TAROA converges over 8 times as fast.
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